激光焊,与等离子焊的区别在哪里?
等离子堆焊*和手工电弧堆焊*、等离子弧堆焊*是三中常用的零件*技术。从理论上说,每种堆焊技术各有其优缺点。
手工电弧堆焊、,*,成本低,操作灵活,是目前工厂使用广泛的一种堆焊*工艺。但这种堆焊技术也有其存在的许多问题。钢铁行业的许多零部件都是中碳高强度钢或合金钢,鸡西熔覆设备,这些钢材的淬硬性强,用手工电弧弧堆焊时非常容易开裂。为了****手工电弧堆焊*时基体材料和堆焊层开裂,数控等离子熔覆设备,需要对基体材料进行预热,而且需要预热的温度相当高,300~500度,这就给手工电弧堆焊的操作带来了很大的困难,恶化了工作环境。由于电弧弧堆焊时对基体零件有大量的热量输入,会造成零件形成很大的残余拉应力,所以堆焊完后要马上进行去应力退火,这又增加了设备的投入,尤其对大型的工件来说,去应力退火是件很困难的事,要增加很大的热处理设备投入。由于反复多次的高温操作,零件经手工电弧焊后变形量都很大,增加了后续机械加工的难度、时间和费用。手工电焊是由人进行操作,堆焊质量易受操作人员的影响,偶然的影响因素比较多。手工电堆焊时的引弧和熄弧也会对堆焊质量带来影响。
激光熔覆层的*性能与选用的涂层材料及熔覆工艺参数有很大的关系。由于熔覆过程为快速凝固,所得到的*一般都是非常细小的。由于熔池内的巨大温度梯度和晶体长大速度的变化,使****终的凝固*呈现为定向生长的复合性凝固*。通常靠近基体的*粗大,表面的*细微。
研究了激光熔覆层和基体热影响区的*形态和组成及合金层与基体的结合状况。试验结果表明,等离子熔覆设备价格,激光熔覆层的*形态是以等轴晶状和树枝状为主的共晶*,熔覆层和基体的热影响区界限分明,过渡层很窄,基体的热影响区为淬火状态的马氏体。运用激光熔覆技术在40Cr钢上制备了(TiO2 B2O3 Al2O3 TiB2)/NiCrAl金属陶瓷涂层,其中TiB2和Al2O3陶瓷颗粒在熔覆过程中为原位反应生成,原位生成的两个陶瓷相都以弥散的方式存在于NiCrAl晶粒内部形成了晶内强化。
等离子熔覆表面改性技术是在金属表面通过按照程序轨迹运行的等离 子束流在高温下通过同步送粉方式获得优异性能的、冶金结合的、低成本的表面工程技术,它因具有广阔的应用前景、巨大的经济效益和社会效益而在工业生产中广 泛采用。其技术优势在于能够在金属零件表面快速依次形成与弧斑直径尺寸相近的熔池,将合金粉末同步送入弧柱或熔池中,粉末经快速加热,呈熔化或半熔化状态 与熔池金属混合扩散反应,随着等离子弧柱的移动,合金熔池迅速凝固,形成与基体呈冶金结合的涂层。本文通过在20Cr钢基体表面熔覆一层*的Fe基合 金粉末制备试样。