电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电*负荷,这些电*的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿*负荷所消耗的无功功率,减少了电网电源侧向*负荷提供及由线路输送的无功功率。
在通信企业中使用不少容量大小不等的感应电动机、变压器和荧光灯等,也就有大量的无功电流在供电线路上、变压器设备内和电动机设备内往返流动,造成无功功率损耗,这是很不经济的。因此需要考虑****功率因数。据统计,企业的无功功率损耗一般是感应电动机占70%,变压器占20%,线路占10%。为此,通常采取下列措施来****自然功率因数:
2 合理选择电动机,使其接近满载运行。
2 将平均负荷小于40%的感应电动机,换以小容量电动机。或将定子为三角形的接线改为星形接线(仅适用于轻载或空载启动的电动机)。
2 正确选择变压器容量,****变压器负荷率(一般75%~80%比较合适)。
目前通信局(站)使用低压静电电容器和调谐电*电容器两种方式来补偿功率因数。
在用并联电容器进行无功补偿的供电系统中电网以感*为主电容器支路以容*为主。在工频条件下并联电容器的容*比系统的感*大得多,可发出无功功率对电网进行无功补偿。但在有谐波治理背景的系统中大量的非线性负荷会产生大量的谐波电流注入电网,对这些谐波频率而言,电网感*显著增加而补偿系统容*显著减小导致谐波电流大部分流入电容器支路,若此时电容器的运行电流超过其额定电流的1.3倍,电容器将会因过流而产生故障。
谐波源有两种一种是谐波电流源,这些用电设备中的谐波含量取决于它自身的特性和工作状况基本上与供电系统参数无关。另外一种是谐波电压源。发电机在发出基波电势的同时也会有谐波电势产生,其谐波电势大小主要取决于发电机本身的结构和工作状况。实际上,在电网中运行的发电机和变压器等电力设备,输出的谐波电势分量很小几乎可以忽略。因此,在供电系统中存在并实际发生作用的谐波源,主要是谐波电流源。谐波治理针对无功补偿系统的调谐频率,如果电网中存在该特定频率的谐波电流源则该谐波将直接被放严重时还会发生并联谐振或串联谐振。系统谐振将导致谐波电压和电流明显地高于在无谐振情况下出现的谐波电压和电流。
微机消谐装置开始对此信号进行数据采集 ,通过电路对信号进行数字测量、滤波、放大等数字信号处理技术,然后对检测到的数据进行分析、计算,得出故障类型。如果当前是铁磁谐振,系统立即启动消谐电路,使固态继电器导通,让铁磁谐振在阻尼作用下迅速消失。此时,CPU系统进行记 录、存贮,并自动报警、显示谐振信息(时间、频率、电压值)。如果电路是过电压或单相接地故障,微机系统检测后,分别给 出显示和报警,并记录、存贮有关故障信息。微机消谐装置采用*的单片微机作为核心元件,对PT开口三角电压(即零序电压)进行遁环检测。正常工作情况下,该电压小于30V,装置内的大功率消谐元件 (固态继电器)处于阻断状态,对系统运行不产生影响。当PT开口电压大于30V时,系统出现故障。