人脸识别技术流程。
匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,桐城人脸识别,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份1信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
人脸识别技术流程。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些1能代表人脸的矩形特征(弱分类器),按照加权投1*的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,人脸识别厂家,有效地提高分类器的检测速度。
人脸检测
人脸检测的任务是从图像中标注出每张人脸的具体位置和大小,一般用人脸矩形框(如人脸识别流程图中的绿色矩形框)四个顶点的坐标来标示。这对于人类来说似乎很简单(不过科学家们还不完全清楚人脑是怎么做到的),可对计算机来说却没有那么容易。因为在计算机内部,彩色1图像是由一个挨一个的点(像素)组成的,每个像素通常由红(R)、绿(G)、蓝(B)三个颜色数值来表示。可想而知,人脸识别系统,直接通过这些数值的差异区分人脸和非人脸十分困难。
因此,人工智能需要设计算法对这些数值进行处理,智能人脸识别,找到人脸区域与非人脸区域在这些数值中蕴藏的差异,从而区别人脸区域和非人脸区域,完*脸检测。