红外测温仪的发展
1800年,英国物理学家F. W. 赫胥尔发现了红外线,从此开辟了人类应用红外技术的广阔道路。在第二次世界1*中,德国人用红外变像管作为光电转换器件,研制出了主动式夜视1仪和红外通信设备,为红外技术的发展奠定了基础。二次世界1*后,首先由美国经过近一年的探索,开发研制的*一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR),它是利用光学机械系统对被测目标的红外辐射扫描。由光子探测器接收两维红外辐射迹象,经光电转换及一系列仪器处理,形成视频图像信号。这种系统、原始的形式是一种非实时的自动温度分布记录仪,后来随着五十年代锑化铟和锗掺gong光子探测器的发展,才开始出现高速扫描及实时显示目标热图像的系统。
红外线测温仪的工作原理解析
红外线测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功*台红外测温仪,1990年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW-Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D 40mm,可达15 m)、WFHX330型(光学瞄准,目标D 50 mm,可达30 m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500 E可以应用于110~500 kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA- THV510、550、570。近期,国产红外热像仪在昆明研制成功,实现了国产化。
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外线测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。
红外线测温仪如何被人们发现的?
人眼能看到的光称为可见光,主要集中在0.38微米~0.78微米附近的谱段内。其中又可细分为紫、蓝、青、绿、黄、橙、红七色光。那么在红光以后就没有其它光线了吗?其实不然,红光以后很长一段频率就是红外线测温仪,高温红外测温仪规格,只是人眼看不到而已。1800年,英国物理学家赫胥尔在研究各种色光的热量时,有意地把暗室中唯1的窗户用木板堵住,并在板上开了一条矩形的孔,孔内装一个分光棱镜。当太阳光通过这个棱镜时,便被分解成彩色光带。在试验中,他突然发现一个奇怪的现象:放在光带红光外的温度计,比室内其它温度计的指示值都要高。经过多次试验,这个所谓含热量较多的高温区,总是位于光带*边缘处红光的外面。于是赫胥尔宣布,太阳发出的光线中除可见光外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,因而叫做红外线。