同一人的不通照片提取出的特征,在特征空间里距离很近,不同人的脸在特征空间里相距较远。
再来考虑人脸识别领域的两个问题:人脸验证和人脸识别。
在光照较差,遮挡,形变(大笑),侧脸等诸多条件下,人脸识别批发,*网络很难提取出与“标准脸”相似的特征,异常脸在特征空间里落到错误的位置,导致识别和验证失败。这是现代人脸识别系统的局限,一定程度上也是深度学习(深度*网络)的局限。人脸识别问题宏观上分为两类:1. 人脸验证(又叫人脸比对)2. 人脸识别。
人脸验证做的是 1 比 1 的比对,即判断两张图片里的人是否为同一人。****常见的应用场景便是人脸*,人脸识别款式,终端设备(如手机)只需将用户事先注册的照片与临场采集的照片做对比,人脸识别厂家,判断是否为同一人,即可完成身份验证。
人脸识别做的是 1 比 N 的比对,即判断系统当前见到的人,为事先见过的众多人中的哪一个。比如*追1踪,小区门禁,会场签到,以及新零售概念里的客户识别。
人脸识别技术要取得进步,这得从它的几大关键技术点上寻求突破,人脸识别的几大关键技术包括:
基于特征的人脸检测技术——通过采用颜色、轮廓、纹理、结构或者直方图特征等进行人脸检测。
基于模板匹配人脸检测技术——从数据库当中提取人脸模板,人脸识别,接着采取一定模板匹配策略,使抓取人脸图像与从模板库提取图片相匹配,由相关性的高低和所匹配的模板大小确定人脸大小以及位置信息。