转轮吸附的影响因素
当吸附材料确实后,影响转轮装置吸附性能的主要因素是转轮运行参数和进气参数。一定范围内进气负荷的变化可通过转速、浓缩比、再生风温度等转轮运行参数调节,以维持预定的性能。
浓缩比
低浓缩比虽然可以保证高去除效率,但增加再生风量的同时也增加了脱附能耗,而且浓缩气体的浓度亦随着脱附风量的增加而降低。工程应用上,浓缩比应兼顾效率与能耗,对于高浓度废气,可选择低浓缩比以确保去除率;而对于低浓度废气,适当选择高浓缩比有利于系统整体能效比****。
转轮转速
吸附与脱附在转轮运行周期中是同步进行的,两者互为影响并共同决定转轮的去除效率,而转速的大小意味着吸附和脱附时间长短。当转速低于较佳转速时,相应的运行周期变长,沸石转轮吸附浓缩 RTO装置,其脱附区的再生充分,但是其相对吸附能力随着转速的减小而减小。而当转速大于较佳转速时,只有脱附区前段少部分能被加热到再生温度。因此,沸石转轮,较佳转速本质上是吸附和脱附时间的控制,以实现转轮去除率较大。实际应用时,因受多因素影响,转轮转速为配合其他参数变化可控制在一区间值。
再生风温度
吸附剂的解析再生存在一个特征温度(较低清洗温度),高于该温度可以获得更快的解析速率同时消耗更小的脱附风量。
进气湿度
实际工程中,有机废气一般都含有水分,部分相对湿度甚至达到80%。而水分可能与污染物形成吸附竞争,占据转轮吸附空间而降低污染物去除效率,因此*湿性是衡量吸附性能的重要指标之一。
进气流速
在一定条件下,较佳转速与进气流速成正比,当进气流速****时,转速应相应的****,如果转速未根据流速进行相应的****,运行值低于较佳转速其相对吸附能力λ随着转速n的减小而减小,在温度分布曲线上表现为吸附区的曲线下降明显,反映了吸附率的降低。因此对于高浓度有机废气,控制低进气流速是十分必要的,或可相应的****转速。
沸石转轮浓缩系统工艺流程
废气的除湿、过滤处理:
沸石转轮在吸附浓缩过程中,待处理废气的相对湿度低于80%时,对VOCs的吸附率可达到90%以上,当废气湿度大于90%时,吸附效率则下降至80%左右。
目前,国内汽车涂装喷漆室采取水旋处理的湿式喷房较多,其排出的废气,相对湿度超过90%,因此在废气进入沸石转轮之前,需要进行加热除湿。同时,由于废气中含有少量漆雾等颗粒杂质,需进行过滤处理,避免影响转轮的吸附效率。
在有机废气处理工程中针对排放废气的不同情况,可以采用不同形式的催化燃烧工艺,但不论采用什么工艺方式,它的流程组成都具有共同的特点,如:
*、有机废气进入催化燃烧装置的气体首要经过预处理,除去粉尘、液滴及*组分,避免催化床层的堵塞和催化剂的*。
第二、有机废气进行催化床层的气体温度必须要达到所用催化剂的起燃温度,催化反应才能进行。因此对于低于起燃温度的进气,必须进行预热使其达到起燃温度。特别是开车时,对冷时气必须进行预热,因此催化燃烧法****适于连续排气的净化,经开车时对进气预热后,即可利用燃烧尾气的热量预热进口气体。若废气为间歇排放,每次开车均需对进口冷气癸进行预热,预热器的频繁启动,使能耗大大增加。气体的预热方式可以采用电 热线也可以采用烟道气加热,目前应用较多的为电加热。
第三、催化燃烧反应放出大量的反应热,因此燃烧尾气温度很高,对这部分热量必须回收。一般首先通过换热器将高温尾气与进口低温气体进行热量交换以减少预热能耗, 剩余热量可采用其他方式进行回收,沸石转轮吸附浓缩 RTO装置,在生产装置排出的有机废气温度较高的场合,如漆包线、绝缘材料等烘干温度可达300度以上,可以不高置预热器和换热器。 但燃烧尾气的热量仍应回收。