拉曼光谱仪在能源、电池领域中的应用
通常情况下拉曼光谱是不用于离子检测的,但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。
想要了解更多拉曼光谱仪的相关信息,欢迎拨打网站上的热线电话!
拉曼光谱仪中的拉曼效应是指什么
拉曼光谱即拉曼散射光谱,这种散射不包括能级间的直接跃迁。处于振动基态的分子,吸收了进射光子的能量,跃迁到一个假设的激发态,这激发态事实上并不存在于散射物质的分子中。 拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四*矩或者磁偶*矩跃迁,并不需要分子本身带有*性,因此特别适合那些没有*性的对称分子的检测。拉曼光谱技术的优越性:提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼效应是指照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分。 拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,内蒙古化学检测仪器厂家,但对同一样品,**化学检测仪器厂家,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动的能量。 c.一般情况下,手持式化学检测仪器厂家,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,手持式化学检测仪器厂家,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
拉曼散射过程
当光子与分子相互作用时,分子可能迁跃至更高能量的虚能态。 这种高能态可能引发若干不同的后果。 一种后果将是:分子驰豫至不同于其初始状态的振动能级,并产生不同能量的光子。 入射光子的能量与散射光子的能量之间差异称作拉曼位移。
当散射光子的能量变化小于入射光子时,则散射称作斯托克斯散射。 一些分子一开始可能处于振动激发态,当它们迁跃至更高虚能态时,可能会驰豫至能量低于初始激发态的较终能态。 这种散射称作反斯托克斯。