经常有些采购,咪头,在采购咪头(传声器)的时候,对“灵敏度”理解不了,现在,简单的分析如下:
灵敏度是指传声器在一定强度的声音作用下输出电信号的大小。灵敏度高,表示传声器的声一电转换*,对微弱的声音信号反应灵敏。技术上常用在0.1pa[μBar(微巴)]声压作用下传声器能输出多高的电压来表示灵敏度。如某传声器的灵敏度为1mV/μBar,即表示该传声器在1μBar声压作用下输出的信号电压为1mV。
习惯上也常用DB来表示传声器的灵敏度。
一般灵敏度有-48~-66DB(国内标准);*的-34DB相当于国内标准的-54DB.
即一般为:-28~-48DB
麦克风灵敏度的定义是馈给1pa(94dB)的声压时,麦克风输出端的电压(dBV)。
所以-30dBV/Pa的麦克风的灵敏度比-42dBV/Pa的麦克要高很多。
MIC灵敏度是指输出电压同麦克风所受声压得复数比。通常情况下定义传声器在1帕声压时输出端的输出电压为1V时的灵敏度为0dB。
麦克风的灵敏度就是以这个标准为基准得出的一个相对值:Lm=20lgVm/Vs,Vs=1v,Vm为麦克风在1帕时输出的电压。
另外,麦克风的灵敏度的dB通常是指dB/V,除此之外,还有一个单位也是简称dB的,即dB/bar,两者之间的关系是-30dB/bar=-50dB/V,
通常情况下,耳机上用的麦克风的灵敏度不能太高,一般是在-50dB/V以下,故可能的一种情况是主板MIC为-42dB/V,耳机上的MIC为-30dB/bar,
MIC灵敏度是固定指标,双指向咪头,是指在标准偏置下测出的。产商可改变工艺或者材料来提高。用户在使用中不可降低,如果用户偏置不正确,会产生失真和带宽挤压,表现为灵敏度降低。
电容式麦克风的结构主要利用两片导电板及两板之间的绝缘空气层来形成一基本电容构造,此两片导电板通常分别被称为“振膜”( Membrane)与“背板”(Backplate)。理想的振膜为一*柔软的弹性薄膜,受到声压作用时会产生振动,因而产生微距离改变,造成振膜和背板之间的动态微位移,因此使该结构的电容值亦随之改变。
电容式麦克风的结构原理:MEMS麦克风的感测器晶片构造通常是由一层较薄且低应力的复晶矽或氮化矽形成振膜,另以一较厚的复晶矽或是金属层形成具有多孔结构的背板,共同形成一组以空气作为介电层的微电容器构造。除了必要的MEMS感测器之外,在MEMS麦克风的封装体内通常还须搭配另一颗电路晶片,提供给该MEMS晶片正常操作时需要的稳定偏压、并将讯号经过放大处理后输出,一般泛称为ASIC (Application-Specific IC)。 MEMS 麦克风感测晶片的构造示意图:MEMS麦克风使用的ASIC因产品应用类别不同,区分为类比式和数位式两款。类比式的ASIC其基本架构主要是由“倍压电路”(Charge Pump)、“电压稳定器”(Voltage Regulator)及“放大器”(Amplier)三大功能区块的电路所组成。 倍压电路目的是藉由对输入的电源进行增压处理,以提供MEMS晶片所需之较高操作电压。放大器电路功用在于放大及稳定输入讯号。电压稳定器的功能则是在ASIC电源输入端提供稳压处理,使晶片内部各电路区块皆能正常运作。而数位式ASIC除了同时具备上述三项基本功能区块之外,还增加了所谓“三角积分调变器”(Sigma Delta Modulator)电路,来负责讯号的取样与*杂讯等任务。
驻*体传声器的结构及工作原理是什么?
驻*体传声器友有两块金属*板,其中一块表面涂有驻*体薄膜(多数为聚全氟乙*)并将其接地,另一*板接在场效应晶体管的栅*上,栅*与源*之间接有一个二*管,如图2-4所示.当驻*体膜片受到振动或受到气流地摩擦时,动圈式咪头,膜片上会出现表面电荷,表面电荷地电量为Q,板*间地电容量为C,则在*头上产*电压U=Q/C,由于两*板地距离不变,电容量C不边,那么*头上地电量Q地变化,就会引起电压地变化,电压变化地大小,反映了外界声音气流地强弱,这种电压变化频率反映了外界声音地频率,这就是驻*体传声器地工作原理.
驻*体传声器的膜片多采用聚全氟乙*,其湿度性能好,产生的表面电荷多,受湿度影响小.由于这种传声器也是电容式结构,信号内阻很大,为了将声音产生的电压信号引出来并加以放大,其输出端也必须使用场效应晶体管.