SO2向SO3的转换率及测试方法的说明
锅炉系统中SO2氧化生成SO3主要受燃料中硫含量、烟气温度、烟气中的含氧量、空气过量程度、所使用的SCR催化剂成分、体积以及飞灰组成和粒径等诸多因素的影响。使用中应严格按照催化剂设计条件来运行SCR系统,尽量保证运行条件不要偏离设计条件,同时避免使用含硫量高的高硫煤或劣质煤种,避免在高温区长期运行,按设计要求运行除尘设备等。
SCR催化剂中的V、Mn、Fe等对主要反应起催化作用的同时,也会对SO2的氧化起催化作用,在燃用含硫煤的锅炉中会将烟气中的SO2氧化为SO3:2SO2 O2 → 2SO3。可通过控制催化剂中的V、Mn、Fe组分的含量及赋存状态来控制SO2向SO3的转换率;另外添加WO3及MoO3也****于*SO2氧化成SO3。
本工程通过以下几个方面来控制SO2氧化率<1%:
1. 选择****恰当的催化剂活性成分及配比;
2. 控制烟气中O2浓度的均匀分布;
3. 控制烟气中SO2浓度的均匀分布;
4. 控制烟气温度不超标。
进入反应器催化剂层入口的烟气流场分布均匀与否直接影响脱硝系统的各项性能指标,如果流场分布不均匀,不但会严重影响脱硝效率、增加氨的逃逸、加速催化剂磨损,严重时还会堵塞催化剂或引起空气预热器的堵塞和严重腐蚀,从而影响主机的正常运行,因此,流场模拟试验研究在脱硝系统设计中****为重要。
典型流场设计要求的反应器顶层催化剂层入口烟气条件见表2,工业废气脱硝反应器找哪家,如果要求脱硝效率达到85%以上,则催化剂层入口的烟气条件还要更严格。
脱硝技术
流场模拟试验研究主要分为计算流体力学CFD计算与物理模型试验验证2部分。
CFD计算****为关键的是计算模型的建立与边界条件的设定,计算模型建立时要根据实际烟气系统设计情况确定烟气系统内部件是否简化以及计算网格的大小,以达到计算速度和精度统一的目的;为了便于脱硝系统入口边界条件的设定,通常将省煤器换热管束出口作为脱硝系统CFD计算的入口,将锅炉空气预热器入口作为脱硝系统CFD计算的出口,工业废气脱硝反应器,易于设定CFD计算条件。
进行物理模型试验验证时,通常选用1∶15~1∶10的比例搭建试验装置,冷态试验时****1大程度上使雷诺数与实际工程雷诺数一致,以准确地反映实际工程的流动特性,用以验证CFD计算结果,工业废气脱硝反应器好不好,从而保证实际工程烟气系统设计满足流场分布要求。
催化反应机理
*soe等[10,11]、Maki等[12]采用光谱技术研究表面催化反应,提出了以下关于SCR催化反应的结论:①对氨气吸附的量在催化反应条件下****多;②SCR催化反应的活性位位于Br*ted酸位;③SCR催化反应中的氨气分子在Br*ted酸位上的吸附与脱附存在一个平衡过程;④被吸附的氨气分子只与距其****近被吸附在表面钒元素的NO分子反应;⑤在催化反应条件下不会发生催化剂表面对NO分子的大量吸附;⑥选择性催化反应是NO分子与活化后的氨气分子发生气态反应生成氮气和水,同时使催化剂部分被还原的反应过程[13,14,15,16].