进入反应器催化剂层入口的烟气流场分布均匀与否直接影响脱硝系统的各项性能指标,如果流场分布不均匀,脱硝,不但会严重影响脱硝效率、增加氨的逃逸、加速催化剂磨损,严重时还会堵塞催化剂或引起空气预热器的堵塞和严重腐蚀,烟气催化剂脱硝,从而影响主机的正常运行,因此,流场模拟试验研究在脱硝系统设计中****为重要。
典型流场设计要求的反应器顶层催化剂层入口烟气条件见表2,如果要求脱硝效率达到85%以上,则催化剂层入口的烟气条件还要更严格。
脱硝技术
流场模拟试验研究主要分为计算流体力学CFD计算与物理模型试验验证2部分。
CFD计算****为关键的是计算模型的建立与边界条件的设定,计算模型建立时要根据实际烟气系统设计情况确定烟气系统内部件是否简化以及计算网格的大小,以达到计算速度和精度统一的目的;为了便于脱硝系统入口边界条件的设定,通常将省煤器换热管束出口作为脱硝系统CFD计算的入口,将锅炉空气预热器入口作为脱硝系统CFD计算的出口,易于设定CFD计算条件。
进行物理模型试验验证时,通常选用1∶15~1∶10的比例搭建试验装置,冷态试验时****1大程度上使雷诺数与实际工程雷诺数一致,烟气催化剂脱硝,以准确地反映实际工程的流动特性,用以验证CFD计算结果,从而保证实际工程烟气系统设计满足流场分布要求。
设备概况
某火电厂1000MW机组的烟气脱硝SCR装置随锅炉同期建设,现有氨喷射系统采用混合型AIG,每个反应器的AIG在入口竖直段烟道内沿炉宽方向设19只喷氨支管.每根支管上设置4个喷嘴,相应支管设有手动蝶阀以调节氨喷射流量,实现整个烟道截面上宽度方向的氨喷射流量分配,如图1。
图1调整前的AIG结构
但此AIG设计局限性在于不具有烟道深度方向的调节功能,调节功能单一.当SCR反应器入口NOx分配不均或喷氨不合理时,仅能通过前端AIG支管调门开度调整来实现反应器出口截面宽度方向的NOx均匀分布,无法****反应器深度方向的喷氨流量调节。
根据现场喷氨优化试验结果,AIG调整前。在满负荷下SCR反应器入口截面NOx分布相对均匀的情况下,A、B反应器出口截面的NOx分布相对标准偏差分别为40.8%和42.1%.出口截面上的NOx浓度分布呈现出由后墙向前墙方向的阶梯形分布。如图2所示。
NH3和SO3对ABS形成的影响
当NH3/SO3摩尔比大于2时,烟气催化剂脱硝,主要形成*铵,在空预器的运行温度范围*铵为干燥固体粉末,对空预器影响很小。影响*1氢铵形成的另一重要因素是NH3和SO3浓度的乘积。
一般认为如果氨逃逸量在2ppm以下将不会形成*氢1铵,然而事实上在足够高的SO3烟气浓度下即使1ppm的氨逃逸量仍可形成*氢1铵。*1氢铵的生成是NH3和SO3浓度乘积的函数,它们之间的关系如图4所示。