进入反应器催化剂层入口的烟气流场分布均匀与否直接影响脱硝系统的各项性能指标,如果流场分布不均匀,不但会严重影响脱硝效率、增加氨的逃逸、加速催化剂磨损,严重时还会堵塞催化剂或引起空气预热器的堵塞和严重腐蚀,湖北催化还原法脱硝,从而影响主机的正常运行,催化还原法脱硝价格,因此,流场模拟试验研究在脱硝系统设计中****为重要。
典型流场设计要求的反应器顶层催化剂层入口烟气条件见表2,如果要求脱硝效率达到85%以上,催化还原法脱硝价格,则催化剂层入口的烟气条件还要更严格。
脱硝技术
流场模拟试验研究主要分为计算流体力学CFD计算与物理模型试验验证2部分。
CFD计算****为关键的是计算模型的建立与边界条件的设定,计算模型建立时要根据实际烟气系统设计情况确定烟气系统内部件是否简化以及计算网格的大小,以达到计算速度和精度统一的目的;为了便于脱硝系统入口边界条件的设定,通常将省煤器换热管束出口作为脱硝系统CFD计算的入口,将锅炉空气预热器入口作为脱硝系统CFD计算的出口,易于设定CFD计算条件。
进行物理模型试验验证时,催化还原法脱硝价格,通常选用1∶15~1∶10的比例搭建试验装置,冷态试验时****1大程度上使雷诺数与实际工程雷诺数一致,以准确地反映实际工程的流动特性,用以验证CFD计算结果,从而保证实际工程烟气系统设计满足流场分布要求。
控制氨逃逸率
在脱硝过程中由于氨的不完全反应,SCR烟气脱硝过程氨逃逸是难免的,并且氨逃逸随时间会发生变化,氨逃逸率主要取决于以下因素:
(1)注入氨流量分布不均;
(2)设定的NH3 / NOx 摩尔比;
(3)温度;
(4)催化剂堵塞;
(5)催化剂失活。
由于燃煤的含硫量很大程度上决定着烟气中SO3的含量,而SO3的含量对*1氢铵的形成有显著影响,所以对于不同的煤种,SCR中氨逃逸量的控制也不尽相同;低硫煤(含S量为1%),氨逃逸量可适当放宽一些;中硫煤(含S量为1.5 %),氨逃逸量≤3ppm;高硫煤(含S量为3%),氨逃逸量≤2.5ppm甚至更低。
在氨逃逸量的控制方面可利用计算流体力学(CFD)软件优化设计,对SCR脱硝装置入口烟气流量和流速分布进行模拟,确定导流叶片的类型、数量和位置,使入口烟气流速、温度和浓度均匀;同时模拟氨气的混合,定期调整喷氨格栅(AIG)各个喷口流量(一般一年一次),使NH3 混合均匀,****终减少氨逃逸量。
SCR烟气脱硝的机理
SCR脱硝反应就是常见的氧化还原反应。选用合适的催化剂,向含有NOX的烟气中通入还原性气体,与氮氧化物反应生成其他对环境无害的产物。****常用的气态还原剂就是氨气,它能在一定温度条件下与氮氧化物反应生成氮气和水。例如:
NO2 NO 2NH3===2N2 3H2O
6NO2 8NH3===7N2 12H2O
SCR烟气脱硝系统的运行方式
该系统其实由两部分组成:脱硝CEMS系统和还原剂储存、输送系统。脱硝CEMS系统可自动检测NOx的含量或浓度,并将该信号输送到DCS系统,DCS系统通过得到的脱硝入口和出口NOx的含量、脱硝烟气流量将迅速计算出所需还原剂的量并通过调整喷氨调节阀的开度控制输送量。其运行操作也是由较为常规的启动和停止两部分组成的。