控制氨逃逸率
在脱硝过程中由于氨的不完全反应,SCR烟气脱硝过程氨逃逸是难免的,并且氨逃逸随时间会发生变化,氨逃逸率主要取决于以下因素:
(1)注入氨流量分布不均;
(2)设定的NH3 / NOx 摩尔比;
(3)温度;
(4)催化剂堵塞;
(5)催化剂失活。
由于燃煤的含硫量很大程度上决定着烟气中SO3的含量,而SO3的含量对*1氢铵的形成有显著影响,所以对于不同的煤种,SCR中氨逃逸量的控制也不尽相同;低硫煤(含S量为1%),氨逃逸量可适当放宽一些;中硫煤(含S量为1.5 %),氨逃逸量≤3ppm;高硫煤(含S量为3%),氨逃逸量≤2.5ppm甚至更低。
在氨逃逸量的控制方面可利用计算流体力学(CFD)软件优化设计,对SCR脱硝装置入口烟气流量和流速分布进行模拟,确定导流叶片的类型、数量和位置,使入口烟气流速、温度和浓度均匀;同时模拟氨气的混合,定期调整喷氨格栅(AIG)各个喷口流量(一般一年一次),使NH3 混合均匀,烟气催化还原法脱硝,****终减少氨逃逸量。
该系统的建立参照了实际低温脱硝工程,脱硝,包括低温SCR反应器、燃烧器、鼓风机、NO反应器、配气系统和控制系统,相当于化学反应工程中的单管反应器.NO由NH3在空气中氧化得到,通过调整NH3的量来保证NO在烟气中的质量浓度.
该系统使用2块150mm×150mm×800mm催化剂模块,如图1所示.催化剂上下顺序安装,形成双床层催化剂单体的反应器结构.分别命名SCR脱硝反应器系统中测温点、取样点(上)为SITE1,测温点、取样点(中)为SITE2,测温点、取样点(下)为SITE3.若以反应器轴线为横坐标L,SITE1为横坐标原点,正方向为烟气流动方向,则SITE2处横坐标为1.2m,SITE3处横坐标为2.4m.
为研究ABS在低温SCR催化反应器中的生成条件、沉积及富集规律和催化剂再生技术,设计和搭建参照实际低温脱硝工程的中试规模的SCR反应器系统.在实际实验过程中,由于反应截面较小等客观原因,不能准确测量出在反应截面上或沿催化剂轴向NH3和NOx的质量浓度分布情况,而该情况对实验研究是比较重要的,为此作者建立了SCR脱硝催化反应数值模拟模型.
数值模拟在烟气脱硝中的应用,不但包括对脱硝工艺整体系统布置和流动特性的模拟研究[4,5,6],还包括对SCR催化反应过程的数值模拟研究.在SCR催化反应过程中,各种组分在催化剂表面上的反应是核心,烟气催化还原法脱硝,采用数学模型可用于指导SCR催化剂的优化设计.
Beeckman等[7]建立了SCR催化剂单孔道的一维模型,分析研究催化剂孔结构对反应活性的影响.沈伯雄等[8]建立了SCR催化剂单孔道的一维模型,模拟SCR催化剂孔道内的催化反应进程.