X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用*性同位素。能量色散用脉冲幅度分析器。探测器和记录等与X射线荧光光谱仪相同。
X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可****2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。
薄膜是指在基板的垂直方向上所堆积的1~104的原子层或分子层。在此方向上,薄膜具有微观结构。
理想的薄膜厚度是指基片表面和薄膜表面之间的距离。由于薄膜仅在厚度方向是微观的,其他的两维方向具有宏观大小。所以,表示薄膜的形状,一定要用宏观方法,即采用长、宽、厚的方法。因此,膜厚既是一个宏观概念,又是微观上的实体线度。
由于实际上存在的表面是不平整和连续的,X荧光测厚仪,而且薄膜内部还可能存在着*、杂质、晶格缺陷和表面吸附分子等,镀层分析仪,所以,要严格地定义和测量薄膜的厚度实际上是比较困难的。膜厚的定义应根据测量的方法和目的来决定。
经典模型认为物质的表面并不是一个抽象的几何概念,测厚仪,而是由刚性球的原子(分子)紧密排列而成,是实际存在的一个物理概念。
形状膜厚:dT是****接近于直观形式的膜厚,通常以um为单位。dT只与表面原子(分子)有关,并且包含着薄膜内部结构的影响;
质量膜厚:dM反映了薄膜中包含物质的多少,荧光测厚仪,通常以μg/cm2为单位,它消除了薄膜内部结构的影响(如缺陷、*、变形等);
物性膜厚:dP在实际使用上较有用,而且比较容易测量,它与薄膜内部结构和外部结构无直接关系,主要取决于薄膜的性质(如电阻率、透射率等)。