高梯度磁选已在工业上成功地应用于高岭土提纯,金、铀和
等*金属细粒尾矿的分选,钢厂废水处理及微细粒赤铁矿的
收等方面。其应用方向还包括其他工业废水处理,化学物质的
纯与分离,生物学上的细胞、*及菌素等的分离,医药的分
,煤的脱硫及除灰,*废气的净化回收等。高梯度磁选选择
问题是妨碍广泛工业应用的关键,尤其对细粒级而言。因此
究高梯度磁选的选择性,****其分选效率是必要的。影响高梯
磁选选择性的因素主要有:磁介质的匹配及排列形式、载体的
质及矿浆流态、被选物料的分散程度及机械夹杂等。
对于矩形钢毛,当将其轴向垂直于磁场方向置于磁场中并研
究其中间区段的磁场特性时,可以忽略其两端的边缘效应而将问
题理想化为两维场进行研究。
有限差分法原则上是用于求解闭合场域内函数数值解的方
法
[4]
。由于钢毛对周围磁场的影响从理论上说可涉及无穷远,因
而所论场域应是无穷大的非闭合场域;为了对所研究的问题进行
有限差分运算,须先合理地给定闭合边界并确定边界条件。
图1 场域边界确定图
现以单丝介质为例进行研究。
对于图 1所示的单丝介质,abcd
为其横切面,在其周围对称地取
定足够大的场域边界 ABCD,使磁
化后的 abcd对周界 ABCD及其以
外区域的影响变得很小以致可以
忽略。此时,ABCD周界上及其外
部区域的磁场已接近均匀的背景
磁场 B0。于是,周界 ABCD上的
边界条件可分段给出为
对于高锡 钨细泥,不振动与振动相比,在两者回收率相近时,振动可使精
矿品位含 WO3 由 59.4%****到 63.0%,含锡由 1.2%降到
0.48%。对钽铌细泥,在回收率相近时,振动使钽铌精矿品位含
(Ta,Nb)2O5由1.029%****到1.847%
[13]
。近年来又用振动高
梯度磁选对浮选难处理的有色金属硫化矿浮选混合精矿(如
Cu-Mo、Cu-Zn、Cu-Pb、Cu-Bi、Cu-As等)的分选进行了研
究
[14]
,均取得了较满意的结果。