脱硫优化工艺原理
实践中,循环流化床锅炉旋风分离器对于平均直径小于50 μm的飞灰颗粒****能力很低。大量的石灰石颗粒在流化床锅炉中停留时间过短,CaO反应不充分,高Ca/S摩尔比工况下,石灰石粉浪费更为严重。工艺上,可以考虑采用回燃方式延长反应时间,延长反应时间,****石灰石利用率。所谓回燃,就是把除尘器收集下来的飞灰,再回送入炉内参与燃烧。回燃既能把未反应的CaO粒子返回炉内循环利用,延长石灰石停留时间,起节约石灰石的作用,又能降低飞灰含碳量。
循环流化床(CFB)锅炉炉内稳定的870℃左右的温度场使其本身具有了炉内烟气脱硫条件,炉外的脱硫装置实际上就是石灰石的制粉、存储及输送系统,并科学经济实用地选择脱硫固化剂。一般电厂大多是外购满足要求的石灰石粉,由密封罐车运至电厂内,通过设置于密封罐车上的气力卸料系统将石灰石粉卸至石灰石粉储仓。在石灰石粉储仓底部,安装有气力输送系统,将石灰石粉通过管道输送至炉膛进行SO2吸收反应。
循环流化床脱硫的石灰石合适的颗粒度一般为0.2~1.5mm,平均粒径一般控制在0.1~0.5mm范围。石灰石粒度大时其反应表面小,使钙的利用率降低;石灰石粒径过细,则因现在常用的旋风分离器只能分离出大于0.075mm的颗粒,小于0.075mm的颗粒不能再返回炉膛而降低了利用率(还会影响到灰的综合利用)。循环流化床锅炉与其分离和返料系统组成外循环回路保证了细颗粒(0.5~0.075mm的CaC2O3、CaO、CaS2O4等)随炉灰一起的不断循环,这样SO2易扩散到脱硫剂核心,其反应面积*,从而****了循环流化床锅炉中石灰石的利用率。0.5~1.5mm粒径的颗粒则在循环流化床锅炉内进行内循环,被上升气流携带上升一定高度后沿炉膛四面墙贴壁流下又落入流化床。循环流化床锅炉运行时较经济的Ca/S比一般在 1.5~2.5之间。脱硫固化剂的选择问题。一般情况下电厂大多选择石灰石作为脱硫固化剂是基于其来源广泛、价格低廉且脱硫效率较高。也可以因地置宜地选择石灰、氧化锌、*渣等作为脱硫固化剂,不同的脱硫固化剂产生的*盐性能有所不同,影响到灰渣的综合利用性能。石灰石粉特性:研磨后石灰石粉颗粒棱角, 硬度高;石灰石粉对压缩空气分子的亲和力差,逸气性强;粒度分布差别较大(20um-1.5mm);堆积密度较大(1.3t/m3左右);吸水性高,粘度大;对输送管道的磨损较大;气力输送的悬浮速度梯度较大,流态化性能差,气力输送的状态****不稳定(属于难输送物料);石灰石粉颗粒容易沉积;吸潮板结,造成堵管。
循环流化床锅炉炉内脱硫的主要问题
实际运行中,由于锅炉运行工况不稳、脱硫效率影响因素控制不严,为使SO2达标排放,往往造成实际Ca/S比较大。如四川某电厂锅炉设计的Ca/S比为1.97,实际运行中Ca/S比有时超过4.0,但是有时即使增加Ca/S摩尔比,也难以达到所要求的脱硫效率。显然单纯通过增加Ca/S比来控制SO2排放在做法,存在诸多弊端:更多的石灰石用量增加了锅炉的运行费用,严重影响脱硫经济性;大量的石灰石进入炉膛煅烧,增加了锅炉的CO2排放量:反应后的粉煤灰中游离氧化钙含量很高,限制粉煤灰综合利用;增加NOX的排放量,对SNCR脱硝系统性能产生*影响;干扰炉内燃烧,降低锅炉效率。