南调机电——伺服驱动器的工作原理
对电机的要求
1、从速到速电机都能平稳运转,低压伺服驱动器价格,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。
2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。
4、电机应能承受频繁启、制动和反转。 伺服驱动器有哪些特点 1、伺服驱动器软件程序主要包括主程序、中断服务程序、数据交换程序。
2、伺服驱动器主程序主要用来完成系统的初始化、LO接口控制信号、DSP内各个控制模块寄存器的设置等。
3、伺服驱动器所有的初始化工作完成后,主程序才进入等待状态,以及等待中断的发生,以便电流环与速度环的调节。
4、伺服驱动器初始化主要包括DsP内核的初始化、电流环与速度环周期设定、PWM初始化、四M启动、ADc初始化与启动、QEP初始化、矢量与永磁同步电机转子的初始位置初始化、多次伺服电机相电流采样、求出相电流的零偏移量、电流与速度P调节初始化等。
5、PWM定时中断程序有的用来对霍尔电流传感器采样A、B两相电流ia、ib进行采样、定标,以及根据磁场定向控制原理,计算转子磁场定向角,化州低压伺服驱动器,再角,再生成PWM信号对位置环与速度环进行控制。
6、功率驱动保护中断程序主要用于检测智能功率模块的故障输出。
7、光电编码器零脉冲捕获中断程序可实现对编码器反馈零脉冲确地捕获,从而可以得到交流永磁同步电机矢量变换定向角度的修正值。
8、数据交换程序主要包括与上位机的通信程序、EEPRoM参的读取、数码管显示程序等。参数的存储控制器键盘值。
9、伺服驱动器软件主程序流程图。
南调机电设备——伺服驱动器主要有:
控制回路电源、主控制回路电源、伺服输出电源、控制器输入CN1、编码器接口CN2、连接起CN3。控制回路电源是单相AC电源,输入电源可单相、三相,但是必须是220v,就是说三相输入时,咱们的三相电源必须经过变压器变压才能接,对于功率较小的驱动器,可单相直接驱动,单相接法必须接R、S端子。伺服电机输出U、V、W切记千万不能与主电路电源连接,有可能烧毁驱动器。CN1端口主要用于上位机控制器的连接,提供输入、输出、编码器ABZ三相输出、各种监控信号的模拟量输出。
南调机电设备——伺服驱动器和变频有什么区别1.控制的电机不同,一个是伺服电机,一个是三相电机。
2.控制方式不同,低压伺服驱动器品牌排行,一个是方波脉冲,一个是正玄波频率。
3.控制精度不同,伺服驱动可以um级的,变频器就是加了编码器也达不到um级的。
顾名思义,伺服系统就是随动系统,要求响应快。
变频器是改变频率,只要用于变速。
伺服必须与配套伺服电机配对使用,变频可以与任意电机配合使用(功率)。伺服一般工作在闭环(编码器),变频开环应用较多(当然也能闭环)
南调机电设备——伺服驱动器控制交流永磁伺服电机
随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。永磁交流伺服系统的性能日渐提*格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在*、要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。
伺服驱动器在控制交流永磁伺服电机时,低压伺服驱动器厂家,可分别工作在电流(转矩)、速度、位置控制方式下。系统的控制结构框图如图4所示由于交流永磁伺服电机(pm*)采用的是磁铁励磁,其磁场可以视为是恒定;同时交流永磁伺服电机的电机转速就是同步转速,即其转差为零。这些条件使得交流伺服驱动器在驱动交流永磁伺服电机时的数学模型的复杂程度得以大大的降低。从图4可以看出,系统是基于测量电机的两相电流反馈(ia、ib)和电机位置。将测得的相电流(ia、ib)结合位置信息,经坐标变化(从a,b,c坐标系转换到转子d,q坐标系),得到id、iq分量,分别进入各自得电流调节器。电流调节器的输出经过反向坐标变化(从d,q坐标系转换到a,b,c坐标系),得到三相电压指令。控制芯片通过这三相电压指令,经过反向、后,得到6路pwm波输出到功率器件,控制电机运行。系统在不同指令输入方式下,指令和反馈通过相应的控制调节器,得到下*的参考指令。在电流环中,d,q轴的转矩电流分量(iq)是速度控制调节器的输出或外部给定。而一般情况下,磁通分量为零(id=0),但是当速度大于限定值时,可以通过弱磁(id《0),得到更高的速度值。
从a,b,c坐标系转换到d,q坐标系有克拉克(clarke)和帕克(park)变换来是实现;从d,q坐标系转换到a,b,c坐标系是有克拉克和帕克的逆变换来是实现的。