纳米材料的效应
体积效应 甘甘微芯:gzjr88.
当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被*,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。纳米粒子的以下几个方面效应及其多方面的应用均基于它的体积效应。例如,纳米粒子的熔点可远低于块状本体,此特性为粉粉冶金工业提供了新工艺;利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收的位移,制造具有一种频宽的微波吸收纳米材料,用于电磁屏蔽,*飞机等。
表面效应
表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧*后所引起的性质上的变化。表9-2给出了纳米粒子尺寸与表面原子数的关系。
表1 纳米粒子尺寸与表面原子数的关系
粒径(nm) |
包含的原子(个) |
表面原子所占例 |
20 |
2.5X10^5 |
10 |
10 |
3.0X10^4 |
20 |
5 |
4.0X10^3 |
40 |
2 |
2.5.X10^2 |
80 |
1 |
30 |
90 |
从表可以看出,随粒径减小,表面原子数迅速增加。另外,随着粒径的减小,纳米粒子的表面积、表面能的都迅速增加。这主要是粒径越小,处于表面的原子数越多。表面原子的晶体场环境和结合能与内部原子不同。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易于其他原子想结合而稳定下来,因而表现出很大的化学和催化活性。
*尺寸
粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为*尺寸效应。Kubo采用一电子模型求得金属超微粒子的能级间距为:4Ef/3N
式中Ef为费米势能,N为微粒中的原子数。宏观物体的N趋向于无限大,因此能级间距趋向于零。纳米粒子因为原子数有限,N值较小,导致有一定的值,即能级间距发生分裂。半导体纳米粒子的电子态由体相材料的连续能带随着尺寸的减小过渡到具有分立结构的能级,表现在吸收光谱上就是从没有结构的宽吸收带过渡到具有结构的吸收特性。在纳米粒子中处于分立的*化能级中的电子的波动性带来了纳米粒子一系列特性,如高的光学非线性,特异的催化和光催化性质等。
*隧道
微观粒子具有贯穿势垒的能力称为隧道效应。人们发现一些宏观量,例如微颗粒的磁化强度、*相干器件的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒产生变化,故称为宏观的*隧道效应。用此概念可定性解释超细镍微粒在低温下保持超顺磁性等。
介电限域
纳米粒子的介电限域效应较少不被注意到。实际样品中,粒子被空气﹑聚合物﹑玻璃和溶剂等介质所包围,而这些介质的折射率通常比无机半导体低。光照射时,由于折射率不同产生了界面,邻近纳米半导体表面的区域﹑纳米半导体表面甚至纳米粒子内部的场强比辐射光的光强*了。这种局部效应,对半导体纳米粒子的光物理及非线性光学特性有直接的影响。对于无机-有机杂化材料以及用于多相反应体系中光催化材料,介电限域效应对反应过程和动力学有重要影响
上述的小尺寸效应﹑表面效应﹑*尺寸效应﹑宏观*隧道效应和介电限域应都是纳米微粒和纳米固体的基本特征,这一系列效应导致了纳米材料在熔点﹑蒸气压﹑光学性质﹑化学反应性﹑磁性﹑超导及塑性形变等许多物理和化学方面都显示出特殊的性能。它使纳米微粒和纳米固体呈现许多奇异的物理﹑化学性质。
现状
纳米技术基础理论研究和新材料开发等应用研究都得到了快速的发展,并且在传统材料、医疗器材、电子设备、涂料等行业得到了广泛的应用。在产业化发展方面,除了纳米粉体材料在美国、日本、中国等少数几个*初步实现规模生产外,纳米生物材料、纳米电子器件材料、纳米医疗诊断材料等产品仍处于开发研制阶段。2010年全球纳米新材料市场规模达22.3亿美元,年增长率为14.8%。今后几年,随着各国对纳米技术应用研究投入的加大,纳米新材料产业化进程将大大加快,市场规模将有放量增长。纳米粉体材料中的纳米碳酸钙、纳米氧化锌、纳米氧化硅等几个产品已形成一定的市场规模;纳米粉体应用广泛的纳米陶瓷材料、纳米纺织材料、纳米改性涂料等材料也已开发成功,并初步实现了产业化生产,纳米粉体颗粒在医疗诊断制剂、微电子领域的应用正加紧由实验研究成果向产品