一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。Rosemount质量流量计依据牛顿第二定律:力=质量×加速度(F=ma),当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:
1.法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;
2.切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。
当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc: ΔFc=2ωVρAΔx (1)式中,A—管道的流通截面积。由于存在关系式:mq=ρVA所以:ΔFc =2ωqmΔx (2)因此,直接或间接测量在旋转管中流 动流体的科里奥利力就可以测得质量流量。
流量控制系统有四个主要特点:
1.流量计和流量调节装置中不包含影响调节过程快速性的大滞后效应和大惯性特性,所以系统响应快,通频带宽。
2.系统中普遍存在外扰,如负载流量的波动和泵的脉动造成的压力脉动等。
3.为增加系统的稳定程度和*外扰能力,在流量控制系统中不采用微分控制规律,多采用以积分为主的PI调节,并在保证调节精度和快速性的前提下尽可能地缩小系统的通频带宽(见PID调节器)。
4.同一管道系统的各个流量控制系统之间往往存在相互影响,因而会使整个流量控制系统的性能变坏。
为了避免这种情况,有三种解决办法:
1.把同一管道系统的几个流量控制系统作为一个整体,按多变量系统的设计原则来确定整个系统的调节规律,以保证系统的稳定性和其他控制性能;
2.采用解耦方法(见解耦控制问题)来消除相互影响;
3.使各个流量控制系统具有不同的通频带,以减小各个流量控制系统之间的相互影响。
流量管的一端被固定,而另一端是自由的。这一结构可看做一重物悬挂在弹簧上构成的重物/弹簧系统,一旦被施以一运动,这一重物/弹簧系统将在它的谐振频率上振动,这一谐振频率与重物的质量有关。质量流量计的流量管是通过驱动线圈和反馈电路在它的谐振频率上振动,振动管的谐振频率与振动管的结构、材料及质量有关。振动管的质量由两部分组成:振动管本身的质量和振动管中介质的质量。每一台传感器生产好后振动管本身的质量就确定了,振动管中介质的质量是介质密度与振动管体积的乘积,而振动管的体积对每种口径的传感器来说是固定的,因此振动频率直接与密度有相应的关系,那么,对于确定结构和材料的传感器,介质的密度可以通过测量流量管的谐振频率获得。
利用流量测量的一对信号检测器可获得代表谐振频率的信号,一个温度传感器的信号用于补偿温度变化而引起的流量管钢性的变化,振动周期的测量是通过测量流量管的振动周期和温度获得,介质密度的测量利用了密度与流量管振动周期的线性关系及标准的校定常数。
科氏质量流量传感器振动管测量密度时,管道钢性、几何结构和流过流体质量共同决定了管道装置的固有频率,因而由测量的管道频率可推出流体密度。变送器用一个高频时钟来测量振动周期的时间,测量值经数字滤波,对于由操作温度导致管道钢性变化,进而引起固有频率的变化进行补偿后,用传感器密度标定系数来计算过程流体密度。